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ABSTRACT 
Background: Visualization of complex mathematical surfaces, like the n-torus, is an open 
challenge. In this study, a double torus data generation process has been proposed using 
the deformation of a torus by a sphere.
Methods: It is proved that a torus T(R,r) can be deformed into a 3-sphere S3(R + r)  with 
the same center and it is the smallest ball to cover the torus T(R,r). Then 3D and 4D torus 
data have been generated from their parametric equations. After that, the generated 
data have been compared with the known knowledge of the shape of a torus using the 
persistent diagram (PD). Then following the theoretical findings, an approximation to 
the torus-torus intersection has been computed to extract it from the union of two 4D 
torus data. Finally, the generated double torus data has been validated by explaining the 
hollowness in the intersection of two sampled torus introducing subtraction operation 
among the PDs of each of the generated structures on the proposed generation process.
Results: In the PDs, it is found that the 4D torus data gives more significant results than 
the 3D torus data which supports the claim of changing the original topology of a higher 
dimensional manifold by using lower dimensional reduction. The result shows that the 
double torus data with hollow intersection has been generated properly.
Conclusion: The successful generation of the double torus paves the way for creating 
more complex data with well-defined topology. This approach is particularly significant 
in scientific computation, especially for researchers focused on topological aspects.
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Introduction 

The study of shape is one of the fundamental fields 
of knowledge. Human has the natural intention of 
constructing shapes from vision. Torus is one of the 
most well-recognized structures in human history. 
These recognized structures can be regenerated 
from observed data and can be used in different 
simulations. For example, torus-shaped geometry 
has been detected from computed tomography data 
of some patients’ prostates and has been regener-
ated to model prostate cancer growth [1]. 

Mathematicians have been fascinated by differ-
ent structures for centuries. The double torus is the 
genus- 2  torus which is the connected sum of two 

tori. Some pure mathematical studies such as affine 
structures [2], homeomorphisms [3], and geomet-
ric uniformization [4] have been investigated on 
the double torus. Coloring a double torus surface 
[5] and some embedding on double torus have been 
studied [6]. Therefore, double torus structures have 
been used as a source of many rigorous mathemat-
ical studies. 

On the other hand, double torus geometry has 
been mentioned for describing the 4D  brain model 
[7], atomic structure, earth’s electromagnetic field, 
and dynamic model of the universe [8]. Double 
torus shapes in galaxies have been found in [9]. 
A double torus 2D  cosmological model has been 
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proposed in [10]. A Double torus has been found 
as a core structure to explore some astrophysical 
phenomena [11]. In the field of electronics, double 
torus-shaped chaotic attractors have been designed 
in [12], [13], and [14]. Also, a double torus network 
has been proposed in [15], while a 5D  torus has 
been considered in [16]. Therefore, double torus-
shaped structures are getting familiar with dif-
ferent fields of study. Therefore, it is important to 
generate double torus data to make a model of its 
relevant study object and to use it in further simu-
lations before application.

The canonical and non-canonical homology basis 
of the double torus has been considered in [17] to 
define a continuous mapping between two struc-
tures of the same topology. But the generation of 
specific double torus data was not been mentioned 
in [17] which is important in geometric modeling. 
In [18], an Auto-Chart Encoder has been proposed 
and double torus data has been generated and stud-
ied as an example to make some fruitful conclusions 
based on the approximated manifold of the input 
data. But the generated double torus data is a lower 
dimensional approximation of its original geome-
try which can’t preserve its topological properties 
including shape which leads to topological errors of 
the model. Also, the shape of the generated data had 
not been validated by evaluating its shape. In [19], 
the authors pointed out the necessity of generating 
proper topological data to count network depen-
dencies and took sample points from the polygon 
quotient space of the double torus. Though double 
torus can’t be parameterized globally, it can be gen-
erated by gluing two tori or taking a connected sum 
of two tori. Persistent cohomology has been intro-
duced to count significant cocycles in [20] and has 
been tested to recognize circular structures in some 
data including double torus data. A double torus 
data of 3120 points merging two torus data of 1600 
points each after cutting a torus by a plane and tak-
ing its reflection as a second torus has been gener-
ated by the authors. Though persistent diagrams 

have been checked, they didn’t provide much detail 
on generating double torus data and this approach 
can’t generate double torus data by taking the con-
nected sum of two different torus especially con-
cerning the torus-torus intersection of two sampled 
torus.

The Intersection problem is one of the funda-
mentals of geometric modeling [21], [22]. Surface-
surface intersection problems have been studied 
to form a nonlinear system of equations and com-
puter-aided modeling (CAM/CAD) has been used 
to solve them in [23], [24], [25], [26], and [27]. But 
specifically, the torus-torus intersection problem 
has not been addressed especially considering their 
topology. 

On the other hand, one of the major reasons for 
triangulation failure is the poor fitting of two inter-
secting surfaces allowing one surface’s point into 
another [28]. So it is important to exclude all such 
points of torus-torus intersection in the generation 
of double torus data. To do so, the structure of the 
torus-torus intersection should be calculated to 
detect points of the torus-torus intersection. The 
structure of the surface-surface intersection prob-
lem has been addressed in [29]. Similar approaches 
have been studied in many more researches (such 
as [30], [31], [32], [33], [34], [35], and [36]). In 
[37], authors constructed two tori from parametric 
equations introducing characteristic points of their 
topology pre-images. Then topological features of 
characteristic points have been calculated using the 
method of perturbation and thus intersection of 
two tori has been computed. Though the method-
ology has better accuracy than the Tracing method, 
they did not generate double torus data using it. 
Also, double torus has been considered to calculate 
circles of the torus-torus intersection in [38], but 
double torus data has not been generated.

In this study, our main hypothesis in torus-torus 
intersection is that a torus can be covered by a 3
-sphere and hence we can construct a 4D  ball to cut 
the intersecting torus to separate its intersection 

Figure 1.  Gluing two tori after cutting a disc from each of them to generate 2-torus.
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part from the union of two given torus by which 
double torus can be constructed. To execute the 
plan, two torus data have been constructed from 
the parametric equation of 4D  torus. To ensure the 

topological structure of the generated double torus 
data, we used persistent homology as it can be used 
as validation [39].

Background 

Statement of the problem 

Double torus or 2-torus is a torus of genus 2 which 
is a cross product of two circles (S1) that can be 

written as 1 1S S× . A 2-torus is constructed as a 
connected sum of two tori that are glued by defin-
ing a homeomorphism between the boundaries 
of a disc that has been cut from one torus into the 
boundary of the same disc that has been cut from 
another torus [40] which is shown in Figure 1. In 
a topological sense, this construction of 2-torus is 
okay; but in reality, generating double torus from 
two given tori of specific geometry is not possible Figure 2.  A Gap in the intersection area of the glued tori.

Figure 3.  Two sampled torus of 5,000 points and their union.

Figure 4.  Generating a torus by rotating one circle around the other circle.

https://www.wisdomgale.com/jphcm/
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without specifying the radius of the ball by which 
discs have been cut from the given tori before glu-
ing. Otherwise, two tori cannot be glued properly 
and so a certain gap will be produced in the inter-
section area as shown in Figure 2.

It is important to note that generating a double 
torus with a hollow intersection is an open problem 
in the field of computer graphics, and it is a chal-
lenging task that requires a deep understanding of 
mathematical and computational methods.

Let us think of a simpler way to construct a genus 
2  torus. Suppose we have two sets of torus 1T  and 

2T . Shift the second torus 2T  along the x-axis such 
that 1T  and 2T  have a common sphere-like intersec-
tion which is shown in Figure 3. Therefore, we have 
their union 1 2T T∪ . Then the last step is to remove 
all the intersection points from 1 2T T∪  to construct 
a double torus of 1T  and 2T  denoted by DT .

However, higher dimensional geometry is not 
developed enough to find the intersection of two 
higher dimensional objects. Hence, the problem is 
to determine the intersection of two higher dimen-
sional objects which is known as the intersection 
problem. In our case, calculating the intersection 
between two tori, called the torus-torus intersec-
tion is one of the major focuses of this study.

Proposed Solution 

However, some approximation techniques might 
be helpful to overcome this situation in some spe-
cific cases of intersection problems, especially for 
torus-torus intersection problem. Before going to 
the methodology, let us check the foundation of our 
hypothesis as started with the following theorem.

Theorem 1. A torus T(R, r) can be degenerated into 
a 3-sphere S3 (R + r) centered at the center of the 
torus T(R, r).

Proof. Let R be the radius of the first circle and r 
be the radius of the second circle of a torus T(R, 
r), where r < R. Rotating the second circle along 
the first circle, the torus can be generated which is 
shown in Figure 4. 

Let us consider an arbitrary constant 0 ≤ △r ≤ R as 
a deforming constant to change R into R – △r and r 
into r + △r so that the sum of the radii R–△r+r+△r 
= R + r remains unchanged. 

If we increase △r from 0 to R, radius R – △r will 
be changed from R to 0, and radius r + △r will be 
changed from r to r + R. The torus will be deformed 
into 3-sphere sphere S3 of radius R + r without 
changing the sum of the radii. Therefore, the torus 
( ), T R r  degenerated into the 3-sphere ( )3S R r+  

centered at the center of the torus ( ), T R r . A par-
ticular example starting from 3R =  and 1r =  has 
been shown in Figure 5.

Let us denote the 3 -sphere ( )3S R r+  centered 

at the center of the torus ( ), T R r  by ( )( )3S T R r+ . 
 Obviously, all 3 -spheres of radius greater than 

 R r+  centered at the center of the torus ( ), T R r  will 
cover the torus. Therefore, Theorem 1 gives us the 
following lemma.

Lemma 1. A 3-sphere S3(T(R + r)) is the smallest ball 
to cover the torus T(R, r).

Thus a torus T(R, r) has been replaced by a 
3-sphere ( )( )3S T R r+  to consider a sphere-like 
intersection of the torus with another torus. In this 
way, the torus-torus intersection has been approx-
imated into a torus-sphere intersection to calcu-
late the intersection of two tori which is shown in 
Figure 6.

Let us consider 1 2T T∩  be the intersection of 
two tori ( )1 1 1,T R r  and ( )2 2 2,T R r . To calculate 

1 2T T∩ , we need to use our approximated 3-sphere 

Figure 5.  Deforming of a torus ( )3,1T  into a sphere ( )0,4T  or ( )3 4S . 

https://www.wisdomgale.com/jphcm/
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( )( )3
1 1 1, S T R r  and ( )( )3

2 2 2, S T R r  to separate inter-
section points from 2T  and 1T , respectively. Thus,

( )( )3
1 2 2 2 1 0 2 2 0, { : , T S T R r x T x x R r x∩ = ∈ − ≤ +  is 

the center of ( )( )3
2 2 2, }S T R r .

( )( )3
1 1 1 2 2 0 1 1 0, { : , S T R r T x T x x R r x∩ = ∈ − ≤ +  is 

the center of ( )( )3
1 1 1, }S T R r .

Thus, we have

( )( ){ } ( )( ){ }3 3
1 2 1 2 2 2 1 1 1 2    , , .T T T S T R r S T R r T∩ ≈ ∩ ∪ ∩

Therefore, we need to consider a 3 -sphere/ball 
3S  of radius ( )1 1R r+  or ( )2 2R r+ centered at the 

center of its mother torus to separate intersection 

points from 1 2T T∪ . Thus, the double torus gener-
ated from the given tori, DT  can be calculated by 
the following equation:

( ) ( )1 2 1 2  .DT T T T T= ∪ − ∩

From another point of view, a double torus can 

be defined from given two sets of torus points 1T  

and 2T  using a set operation called symmetric dif-
ference (denoted by △). Mathematically,

( ) ( ) ( )( ){ } ( )( ){ }3
1 2 1 2 2 1 1 2 2 2 2 1 1 1    \ \   \ , \  3 , .DT T T T T T T T S T R r T S T R r= = ∪ ≈ ∪�DT =  T1 △ T2 =  

	
( ) ( ) ( )( ){ } ( )( ){ }3

1 2 1 2 2 1 1 2 2 2 2 1 1 1    \ \   \ , \  3 , .DT T T T T T T T S T R r T S T R r= = ∪ ≈ ∪�

Let us denote T1\S3 (T2 (R2, r2)) by T2 cut and T2\S3 
(T1 (R1, r1)) by T1 cut. Thus

Based on this finding, we have designed our 
methodology which is discussed in the Methodology 
section. 

In both of the above cases generated double 
torus DT will be the same, since

( ) ( ) ( ){ } ( ){ }1 2 1 2 1 1 2 2 1 2      T T T T T T T T T T∪ − ∩ = − ∩ ∪ − ∩

	
  T1 △ T2.( ) ( )1 2 2 1 1 2 \   \   .T T T T T T= ∪ = �

Other Tools to Validate this Study 

In this study, double torus data has been gener-
ated theoretically in the sections named proposed 
solution and practically in “Results and Discussion.” 
Since DT  is a 4 -dimensional object, it is hard to 
visualize it. Though DT  can be visualized as a 3
-dimensional projection, topological invariants 
of the 3 -dimensional projected torus were not as 
proper as a torus should have been (see “Results and 
Discussion” for details). Also, using lower dimen-
sional reduction of a higher dimensional manifold 
might change the original topology of the manifold 
claimed in [39]. So, to study the topological prop-
erty of higher dimensional objects, it is important 
to generate the object on its own domain. After gen-
erating higher dimensional data, one of the major 
challenges is to check the shape of it. This challenge 
pushed us to the validation of the generated double 
torus data.

In algebraic topology, a topological invari-
ant named homology can count holes in a struc-

ture [41]. Then, 0-dimensional hole 0H  (called as 
connected components), 1-dimensional hole 1H  

Figure 6.  Torus has been approximated by sphere to approximate the torus-
torus intersection into a torus-sphere intersection.

https://www.wisdomgale.com/jphcm/
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(known as loops), and 2 -dimensional hole 2H  
(known as voids) of a torus have been calculated in 
[42]. Considering the double torus as a compact ori-
entable surface, the homology of DT  has been cal-
culated. As these holes have been used frequently 
in algebraic topology, this information of holes of a 

torus and ( )0 1 2 , , DT H H H  is assumed as a known 
knowledge of the shape of a torus and DT . Thus, 
the knowledge of holes of a torus and expected 
holes of a double torus are the reference knowledge 
that will validate our study. To do so, a strong tool 
to detect the shape of torus and double torus data 
is needed. A new emerging tool called topologi-
cal data analysis (TDA) has been used to calculate 

0 1, ,H H  and 2H  of any finite higher dimensional 

data. So, we plan to detect holes 0 1, ,H H  and 2H  of 
our generated double torus data, then compare it 
with our reference knowledge and finally discuss 
our findings in the “Methodology” section.

In TDA, filtration has been defined by introduc-
ing a constant ϵ as the radius of a ball centered at 
each point of the given data points to construct a 
simplicial complex and chain complex from which 
the number of holes ( )0 1 2, , H H H  are calculated 
(see [40] for details). Plotting 0 1 2, , H H H  against ϵ, 
the persistence of holes has been visualized as a 
persistent diagram (PD). Also, a barcode is used to 
visualize the lifetime of each 0 1, ,H H  and 2H  against 

ϵ. In this study, a module has been written using the 
Python package ripser [43] to calculate PDs and bar-
codes to generate DT  in “Results and Discussion.” 
In the whole generation process of DT  data, PDs 
of each step have been checked to validate our ref-
erence known knowledge ensuring the shape of it.

Methodology 

The following steps have been followed to generate 
double torus data: 

Step 1: Two torus data 1T  and 2T  have been con-
structed by using parametric equations 2 of the 4D 
torus. 

Step 2: Then shift 2T  along the x-axis so that it inter-
sects 1T  spherically. 

Step 3: Then join 1T  and 2T  using union operation 
which has a torus-torus intersection part inside.

Step 4: After that, using our hypothesis a 4D  sphere 
(considered a ball) has been constructed. 

Step 5: Then 1  T cut  and 2  T cut  have been calculated 
separating the torus-torus intersection data from 

2T  and 1T , respectively. 

Step 6: Then, the union of the 1  T cut  and 2  T cut  con-
structs the double torus data. 

Figure 7.  Building a simplicial complex of four points at different radii of mini balls ϵ.

https://www.wisdomgale.com/jphcm/
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Step 7: To validate our generated data we have used 
persistent homology to track changes of data in 
each step of the generation process.

Results and Discussion 

Ripser is one of the most popular and efficient 
Python packages which is capable of computing 
persistent homology of 5  types of data files (dis-
tance matrix, lower distance matrix, upper distance 
matrix, point cloud, and DIPHA) using Rips com-
plexes [43]. In this study, Ripser has been used to 
calculate persistent homology and its diagrams 
using point cloud data only.

To explain the construction of simplicial com-
plexes, 1-skeleton simplicial complexes of a set con-
taining 4  points have been shown with increasing 
radius of mini balls or thresh denoted as ϵ cen-
tered at each of the points as shown in Figure 7. 
Two points have been connected by a line if their 
ϵ-balls intersect each other. In this way, simplicial 
complexes have been created at different values of 
ϵ. At a certain value of ϵ (ϵ = 4.12132), a cycle has 
been generated on it denoted by 1. The value of ϵ 
at which the cycle has been generated is called the 
birth of the cycle and after a certain period, it dies 
because of appearing another line connecting any 
two points of the cycle. That particular value of ò  
is called the death of the cycle. This is how the birth 
and death of each cycle have been calculated for a 

point data set which is stored as persistence data 
for each cycle.

Here cycles have been created from 1 -skeleton 
simplicial complexes of sample data of the gener-
ated torus taking 20 points of them that are indi-
cating 1D  holes as shown in Figure 8. Thus, 2D  
holes have been calculated by creating 2-skeleton 
simplicial complexes. After calculating the per-
sistence data of the generated 3D  and 4D  torus, it 
has been visualized in two ways by plotting death 
against birth as a PD and by plotting lifetime as a 

line against 0 1, ,H H  and 2H  as a barcode are shown 
in Figures 9 and 10.

As mentioned in the “Other Tools to Validate this 
Study” section some topological invariants may lose 
to lower dimensional reduction of a torus [39]. To 
check the homology of 3D  torus compared with 
the homology of 4D  torus, a 3D  torus data of 400  
points has been generated using the following para-
metric equation:

( ) ( )
( ) ( )

( )
[ )

( )

, cos cos , 
, cos sin ,

 1
,  sin

with ,   0, 2 .

x R r
y R r

z r

ϑ ϕ ϑ ϕ
ϑ ϕ ϑ ϕ

ϑ ϕ ϑ
ϑ ϕ π

= +
= +

=
=

Then, the PD and barcode have been calculated 
(Figure 9) of the generated torus points using 

Figure 8.  Simplicial complexes of 20  points of 4D  torus.
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Ripser considering 3R =  and 1r =  to compare the 
result with Figure 10. From Figure 9, 1H  has one 
point that persists significantly but one more was 
expected and 2H  hardly persists. On the other hand, 
400  data points of 4D  torus have been generated 
considering 3R =  and 1r =  using the following 
parametric equation:

( )

[ )

, ,   [(   * cos( )) cos( ),
( * cos( )) sin( ), 
( * sin( ) cos( ), (2)
( * sin( )) sin( )],

with , ,   0, 2 .

s R r
R r
R r
R r

ϕ θ ψ ϕ ϑ

ϕ ϑ
ϕ ψ
ϕ ψ

ϑ ϕ ψ π

= +

+
+
+

=

Figure 10.  PD and barcode of the 4D  torus point cloud.

Figure 9.  PD and barcode of the 3D  torus point cloud.
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Then Figure 10 has been made follow-
ing the same approach of the 3D  torus. Since 
Figure 10 has a clear recognition of persisting one  

0H , two 1H , and one 2H  points significantly which 
is exactly equal to our known knowledge of the 
shape of a torus. Thus some influence of lower 
dimensional reduction of the torus has been issued. 
Therefore it is recommended to generate 4D  torus 
data without taking any lower dimensional reduc-
tion, especially for preserving its topology. Naturally,  
3D  torus data can be used for the entire process of 
creating double torus data that is suggested in this 
work. In this experiment, we opt to use 4D  torus 
data since we want to verify if the created double 
torus data is hollow inside.

To construct a double torus as found in the “Other 
Tools to Validate this Study” section theoretically, at 

first, two 4D  torus named as 1T  and 2T  centered 

at ( )0, 0, 0, 0  and ( )2 2 / 2, 0, 0, 0R r r+ − , respectively, 
containing 400  points each have been generated by 
using (2) considering 3R =  and 1r =  as mentioned 

in the “Methodology” section. Then, 1T  and 2T  have 
been joined with the set union, that is, newly joined 

torus NT  can be written as 1 2  NT T T= ∪  which 
contains 800  points. Then, Euclidean distances 

between any two points of NT  have been intro-
duced. As defined in the “Other Tools to Validate 
this Study” section, 1  T cut  has been calculated as 
the set of all those points of NT  whose distance 
from the center of 1T  is greater than or equal to 
the radius of the approximated 3D  sphere of 1T  
torus 3 1 4R r+ = + = . Thus, 1  T cut  consisting of 
375  points has been computed which is equal to 

2 1\T T  considering 3D  sphere ( )( )3
1 , S T R r  as an 

approximation of 1T  torus. Similarly, a 2  T cut  con-
sisting of 383  points has been computed which is 

equal to 1 2\T T  considering 3D  sphere ( )( )3
2 , S T R r  

as an approximation of 2T  torus. Finally, the union 
of 2  T cut  and 1  T cut  construct DT  which contains 
758  points. The generated NT , 1  T cut , 2  T cut , and 
DT  have been shown in Figure 11.

Table 1 shows homologies of DT  that have two 
significant overlapped points of 1H  and two very 
close points of 2H . Obviously, these overlapping 
cannot be detected from the PD of DT  in Figure 

11. So, 0 1, ,H H  and 2H  of DT  have been ordered 
decreasingly considering each point’s lifetime (i.e., 
death-birth) and the first 10 rows of the data set 

Figure 11.  Steps of double torus data generation and PD of NT , 2  T cut , 1  T cut , and double torus.
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have been shown in Table 1. There is one 0H  point 

that persists, four significant 1H  points that persist 
for a certain lifetime greater than 1.5  and one sig-

nificant 2H  point that persists for a certain lifetime 
greater than 1.4  for DT . On the other hand, there is 

one 0H  point that persists, and three significant 1H  
points that persist for a certain lifetime greater than 

1.5, and two significant 2H  points that persist for a 
certain lifetime greater than 1.4  for NT  (Table 2).

From the above shreds of evidence overall shape 
of DT  has been detected as a double torus with 
one significant void in common, i.e., it has a hollow 
inside the intersection and two significant voids 
of NT  indicating there is a block inside the inter-
section that separated the void into two. Though 
overall estimation has been made, selecting sig-
nificant points is still unclear. To be honest, the 

significant thresholds have been chosen consider-
ing the known shape of DT  or NT . Therefore more 
strong evidence is needed to describe the hollow-
ness of DT .

The data generation process followed in this 
study is actually a step-by-step evolution. In this 
whole process, a small number of points of two 
given tori have been changed. That is, most of the 
given points remained unchanged. Since the homol-
ogy of some specific data will always be the same, 
the homology of unchanged data points should 
be the same throughout the generation process. 
Differences between the two homologies have been 
introduced to eliminate unchanged data points 
homology to tract changes of the first homology 
concerning the second homology. In this study, 
eight cases have been made which have been dis-
cussed below:

Case 1. 1 2 \  T T cut  and 2 1  \ T cut T . 

Table 2.  Significant homologies of NT.

H0 H1 H2

Birth Death Lifetime Birth Death Lifetime Birth Death Lifetime

0 inf inf 1.50364 3.7196 2.21596 2.8048 4.20771 1.40291

0 1.94059 1.94059 1.55584 3.65461 2.09877 2.8048 4.20771 1.40291

0 1.86374 1.86374 1.55584 3.65461 2.09877 2.43653 2.84649 0.40996

0 1.84732 1.84732 1.40604 2.61354 1.2075 3.71847 4.11452 0.39605

0 1.84732 1.84732 1.585 2.75213 1.16713 3.71847 4.11452 0.39605

0 1.8108 1.8108 1.585 2.75213 1.16713 3.7196 4.10322 0.38362

0 1.8108 1.8108 1.47946 2.61354 1.13408 3.75589 4.10228 0.34639

0 1.78019 1.78019 1.50364 2.61354 1.10988 3.75589 4.10228 0.34639

0 1.78019 1.78019 1.37491 2.44595 1.07104 3.73619 4.05671 0.32052

0 1.7709 1.7709 1.58048 2.61352 1.03304 3.73619 4.05671 0.32052

Table 1.  Significant homologies of DT.

H0 H1 H2

Birth Death Lifetime Birth Death Lifetime Birth Death Lifetime

0 inf inf 1.50364 3.7196 2.21596 2.8048 4.20771 1.40291

0 1.94059 1.94059 1.55584 3.65461 2.09877 2.81897 4.20771 1.38874

0 1.86374 1.86374 1.55584 3.65461 2.09877 2.43653 3.19298 0.75645

0 1.84732 1.84732 1.37491 3.03275 1.65784 2.90905 3.61087 0.70182

0 1.84732 1.84732 1.50364 2.7955 1.29186 3.08696 3.60688 0.51992

0 1.83902 1.83902 1.51649 2.75927 1.24278 3.7196 4.21659 0.49699

0 1.83636 1.83636 1.58048 2.75927 1.17879 3.71847 4.11452 0.39605

0 1.8108 1.8108 1.585 2.75927 1.16713 3.71847 4.11452 0.39605

0 1.8108 1.8108 1.585 2.75927 1.16713 3.75589 4.10228 0.34639

0 1.78019 1.78019 1.46216 2.61354 1.15138 3.75589 4.10228 0.34639
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Case 2. 2 1 \  T T cut  and 1 2  \ T cut T .

In these cases, homologies of T1\homologies 
of T2 cut produced those homologies of T1 that 
have been changed in T2 cut (Fig. 12). Due to 
some missing points of T1 in the T2 cut some 
loops connecting those points in T1 are missing 
in the homologies of T2 cut. The loop found at 
1.6624 is significant among them. Some nonsig-
nificant voids have been found enclosed by those 
loops. Similar changes have been noted in the 

homologies of T2 with respect to the homologies 
of the 1  T cut  (Fig. 13).

On the other hand, homologies of 2  T cut \homol-
ogies of T1 produced those homologies of 2  T cut  
that have been changed in T1 (Fig. 12). Few loops 
have been found around the cut of 2  T cut  since it 
creates a hole inside. Similar changes have been 
noted in the homologies of T2. The significant loop 
among them has been found at 1.7776  (Fig. 13).

Case 3. (disjoint union of T1 and T2) \ DT and DT \ 
(disjoint union of T1 and T2). 

Figure 13.  Homologies of 2T \homologies of 1  T cut  and homologies of 1  T cut \homologies of 2T .

Figure 12.  Homologies of 1T \homologies of 2  T cut  and homologies of 2   T cut \homologies of 1T .
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Case 4. (disjoint union of 1  T cut  and 2  T cut ) \ DT 
and DT \ (disjoint union of 1  T cut  and 2  T cut ).

Taking the difference between the homologies of 
the disjoint union of T1 and T2 and the homologies of 
DT , few loops have been found due to the absence 
of some points of T1 and T2 in DT which are similar 
to Case 1 and Case 2. A significant loop has been 
found in 1.6624  (Fig. 14). There are no changes 

found in the disjoint union of the 1  T cut  and 2  T cut  
concerning DT .

The difference between the homologies of DT  
and homologies of the disjoint union of T1 and T2 
indicates changes in the homologies of DT  con-
cerning homologies T1 and T2. In this case, two sig-
nificant loops around the intersection of T1 and T2 
have been found at 1.3749  and 1.8637 . Also, two 
significant voids have been found enclosed by these 
two loops at 2.4365  and 2.9090  (Fig. 14). A similar 
result has been found taking the difference between 
the homologies of DT  and homologies of the dis-
joint union of the 1  T cut  and 2  T cut  (Fig. 15).

Case 5. (disjoint union of 1T  and 2T ) \  NT  and  
 NT \ (disjoint union of 1T  and 2T ). 

Case 6. (disjoint union of 1  T cut  and 2  T cut ) \ NT  
and NT  \ (disjoint union of 1  T cut  and 2  T cut ).

Some loops have been found taking differences 
between a) homologies of disjoint union of 1T  and 

2T  and homologies of NT ; b) homologies of dis-
joint union of 1  T cut  and 2  T cut , and homologies of 
NT  which are similar to Case 1, Case 2, Case 3, 
and Case 4 as expected.

But differences between a) homologies of NT  
and homologies of the disjoint union of 1T  and 2T  

Figure 14.  Homologies of disjoint union of 1T  and 2T \ homologies of DT  and homologies of DT  \ homologies 

of disjoint union of 1T  and 2T .

Figure 15.  Homologies of  DT \ homologies of disjoint 

union of 1  T cut  and 2  T cut .
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(Fig. 16), b) homologies of NT  and homologies of 

disjoint union of 1  T cut  and 2  T cut  (Fig. 17) showed 
a greater number of loops than Case 3 and Case 4 

since the intersection of 1T  and 2T  is not hollow in 
NT . Among all of these loops, four significant loops 
have been detected. Two of them are similar to  DT
around the intersection at 1.3749  and 1.8637 . The 

remaining two other significant loops are due to the 
presence of some points of 1T  and 2T  inside their 
intersection at 0.5586  and 1.0995 . There are a few 
voids that are not significant compared to voids of 
DT  found in Case 3 and Case 4. A significant loop 
at 1.6624  has been detected in the homology of 
the disjoint union of 1T  and 2T  different from the 
homology of NT .

Figure 17.  Homologies of NT  \ homologies of disjoint union of 1  T cut  and 2  T cut  and homologies of disjoint 

union of 1  T cut  and 2  T cut  \ homologies of NT .

Figure 16.  Homologies of NT \ homologies of disjoint union of T1 and T2, and homologies of disjoint union of 
T1 and T2\ homologies of NT.
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Case 7.  \ NT DT .

Case 8.  \ DT NT .
In these cases, the difference between the 

homologies of NT  and homologies of DT  showed 
two significant loops due to having points on the 
intersection at 0.5586  and 1.0995  (Fig. 18). The 
other two significant loops of NT  found in Case 5 
and Case 6 are similar to DT  and so they have been 
removed. 

However, the difference between the homologies 
of DT  and the homologies of NT  (Fig. 18) showed 
one significant loop around the intersection at 
1.8712  since other loops found in Case 5 and Case 

6 is similar to NT . Also, two significant voids have 
appeared at 2.9090  and 3.0870  since there are no 
significant voids in NT .

Analyzing all eight cases, we have found the fol-
lowing significant results: 

Figure 19.  The generated double torus data considering each torus of 50,000  random uniform points. (a) 
Before processing. (b) After processing.

Figure 18.  Homologies of DT  \ homologies of NT  and homologies of NT  \ homologies of DT .

https://www.wisdomgale.com/jphcm/


https://www.wisdomgale.com/ejsrr/	 179

European Journal of Scientific Research and Reviews. 2024; 1(3): 165-181.

1.	 Presence of some points of T1 and T2 inside 
their intersection created two more signif-
icant loops and some non-significant voids 
discussed in Case 5 and Case 6. 

2.	 Due to the hollowness of the intersection of 
T1 and T2 in DT, two significant voids have 
been created with two significant loops 
around it discussed in Case 3 and Case 4. 

3.	 There are some dissimilar significant voids 
and one dissimilar significant loop of DT 
than NT has been detected in Case 3 and 
Case 4 which ensure that DT has hollow-
ness inside comparing with NT. 

4.	 Changes in connected components of all 
cases are found helpful to detect significant 
loops by following gaps among themselves. 
It seems that there is a relationship between 
them. Since this is a new phenomenon, the 
relation among connected components, 
loops, and voids should be investigated in 
more details. 

Thus the problem of generating a double torus 
has been encountered. The double torus data has 
been generated considering 50,000  random uni-
form points from a torus. The generated double 
torus data before and after processing has been 
shown in Figure 19.

Conclusion and Further Research 

In the field of data generation, double-torus data are 
useful for testing algorithms and models in a vari-
ety of applications, such as topology optimization, 
computer-aided design, computer graphics, image 
processing, and machine learning. However, gener-
ating double torus data needs more care concerning 
its topological properties. In this study, we proved 
theoretically that a torus ( ), T R r  can be deformed 
into a 3 -sphere ( )3S R r+  centered at the center of 
the torus ( ), T R r  in the Theorem 1. As a result, the 
Lemma 1 has been derived that showsa 3-sphere  

( )( )3S T R r+  is the smallest ball to cover the torus 
( ), T R r . Thus, a double torus data generation algo-

rithm has been proposed with an approximation of 
torus by a sphere theoretically in the “Other Tools 
to Validate this Study” section.

After that, the Ripser [43] package was used to 
check the number of holes as a topological invari-
ant of a 3D  torus and a  4D  torus generated from 
their parametric equations (1) and (2), respec-
tively, to compare with the known knowledge of 
the shape of a torus. Following a cross-check of 

their PDs, we decided to employ 4D  torus data 
for this investigation. Then, following the the-
oretical findings, a routine has been developed 
in Python to approximate the torus-torus inter-
section into a torus-sphere intersection. Thus, 
torus-torus intersection points have been cal-
culated from the union of two 4D  torus data to 
extract it by following the procedure mentioned in 
the “Methodology” section. Finally, double torus 
data has been calculated by separating intersec-
tion points from the union of two 4D  torus. After 
that, the generated data was validated by follow-
ing persistence in the calculated number of zero, 
one, and two-dimensional holes using Ripser. 
Finally, changes in the homology of each step of 
the generation process have been investigated in 
“Results and Discussion” to explain the hollow-
ness of the intersection of our generated double 
torus data.

It is worth noting that this method is an 
approximation of torus-torus intersection points, 
as the two tori are represented by a discrete set 
of points, not a continuous mathematical sur-
face and the sphere representation of the torus 
is just an approximation of the true surface. 
Additionally, this method only works if the tori 
are convex (   )R r> , as for concave tori (   )R r< , 
the intersection will not be spherical. The gener-
ated double torus data must have better quality 
since it preserves the proper topology of a double 
torus. The proposed algorithm might be a good 
alternative to generate topology preserving dou-
ble torus data that is suitable to use in testing 
algorithms and models of relevant applications. 
The generated double torus data can also be used 
to visualize double torus data after taking a 3D  
projected view of it. Additionally, conducting the 
entire process for 3D  torus data is not compli-
cated. It is also possible to reconstruct an irregu-
lar double torus considering two dissimilar torus 
in Step 1 of this generation process discussed in 
the “Methodology” section.

There are several possible applications of this 
study: 
(a) �Visualization: Different mathematical (topo-

logical) surfaces can be visualized using a sim-
ilar approach to this study. The most closely 
related topological surfaces include the 3-torus, 
4-torus, and others. 

(b) �Validation: The validation approach using 
persistent diagrams can be employed to ver-
ify whether any data structure is topologically 
correct. 
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(c) �Digital art: Different digital artworks based on 
the torus can be created using the concept of the 
proposed data processing approach. 

(d) �Hollow double torus as synthetic data: The 
generated double torus data can be used as syn-
thetic data to validate models in various fields 
of study, particularly in computational geome-
try and topology. 

(e) �Data generation: In a broader sense, this study 
serves as an example of data generation con-
cerning topological properties. Studies that 
require topologically sound synthetic data to 
validate their models may find this study partic-
ularly relevant to their interests.
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